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The analysis of the problem formulated and studied in D, 23 is resumed. The conditions 
which the distribution of the resistivity of the working substance in a channel with finite 

electrodes must satisfy in order for the current in the external circuit to reach its maxi- 
mum are investigated. The resistivity is assumed to be a tensor function of the coordi- 

nates; the tensor is assumed to be symmetric and its principal values to be piecewise- 
continuously differentiable functions. 

1. Formulation of the problem, We consider a flat channel (Fig. 1) of 
width 26 whose walls are dielectric everywhere except for two segments of equal length 

Y 

* 

2h facing each other at opposite sides of the channel; 

6 these segments are made of an ideally conductive mate- 

-A I h 
-1) rial. The conductive segments are connected through 

OFi5 
the load R. 

The working substance characterized by the resistivity 
tensor P,, (5, y) which varies from point to point is 

moving in the channel at the velocity v (V(y), 0, 0) . 
Fig. 1 We assume that this center is symmetric; let pl (z, y)? 

pZ (5, y) be its principal values and CL, 8 the corre- 
sponding principal axes. Denoting the angle between the positive direction of the 5- 
axis and the a-axis ( l ) by y (z, 9) , we can find the Cartesian components of the ten- 

sor l’,, from the formulas 
(I.11 

Pxlr == pux = ‘IS (PI - pz) sin 2r 

Imposition of a magnetic field H (0, 0, - B (x)) causes an electric current of den- 
sity j to flow in the channel (the Cartesian coordinates of this vector will be denoted 

*) We assume that the a- and B-axes form a right-handed system. 
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by Q1, c2) and a current I given by the formula 

1 = j %s(z, +s)ds 
--h 

to flow in the external circuit. 

(I.21 

The equations describing the current distribution in the channel can be written as 

& 21 div j=O, Pa sj= -- gradzi-+- $vxR (1 J-2> 
Here Z1 represents the electric field potential. 

Introducing the current function z2 (x, y) by way of the relation j = - rot 2s~~~ 

we can rewrite Eq. (X,3) in the following standard form (where z,“, zi , etc., denote 
derivatives): z 1 

-” -- Pr* S’ - PxyP 5 --’ z, a z 5s 

ZY s =;: -- prce z;l - p+& 5” + c-1 VB, zld” == - 51 
(4 -4) 

Relation (1.2) becomes 

f=z”(h, ::s> --2(-h, *Sf (2 -5) 

To Eqs. (1.4) we add boundary conditions expressing the properties of the channel walls. 
the conditions at infinity, and Ohm’s law for the external circuit; these conditions are 

of the form 
2’ (S, f 6) == z2’ *- const (at the electrodes) 

(1.6) 

29 (2, _I: 6) ix.$_.J = z,” = const, 2 (X1 f 8) /3c<_-), T= z_z -I const (at the insulators) 

2,s (& CX: y) --I zy2 (* c-z ( y) = 0, 2+1 - .z_ 1 l;r; & (2+2 I- z-3) 

We are to determine the pair of F~ece~ise~continuo~ly diff~ren~able functions 

fjl (z, ZJ), pa (z, y) subject to inequalities 

O<prnUI~ pi (ZS y) < &trar c< c* f i=1,3 (1.7) 

and the piecewise-continuously differentiable function 7’ (5, y) which maximize func- 

tional (1.5). 
The above problem differs from those considered in g, 21 by the tensor character of 

the resistivity of the working substance, As we shall see below, this fact is of consider- 

able importance (the optimal distribution in practically interesting cases exists in the 
cfass of tensar functions but not in the class of scalar functions). 

2, The nsccraary staadyrrata conditiona, kt us introduce the Lagrange 
mu~~pliers fr, 1~~~ Ezl 11.~ corresponding to the four equations (I. 4) and construct the 
function f-I after expressing the Cartesian components of the tensor I-‘, in terms of the 

controlling functions p r1 p 2: y according to formulas (1.1). We have 

JI =_ _ sj2 =,r ([f,I pz; -1 (fjl - pz) CDS 2~1 C1 -+- (pl - ps) sin 27 5”) - 

I- I//% Q ((fjr - pz)i;in 2y p + [px -I- Pa - (p1 - I)%) cos 227 P - c-l vnI+ 

The multipliers pi7 i =y f . ?i correspond to restrictions (1.7) written in the form of 

equivalent equations [33. 
The steadystate conditions are given by the formulas [3] 
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El% + ‘llV = 0, Ear + %Il = 0 (2.2) 

bH/it& = 0, c~H/'&~ = 0 (2.3) 
dH / ap1 = 0, dH Jdpz = 0, aHi@ = 0 

dH / dp,, = 0, aH/ap,, =o (2.4) 
Let us introduce the functions 6.1~ (z, 91, w2 (r, y) by way of the relations 

Er = - %lf, g2 = -q,; rll = %v 712 = %A, (2.5) 

Equations (2.2) are satisfied identically in this case ; as regards Eqs. (‘2.3). and (2.4.). 
they can be written as (we omit the obvious intervening operations) 

Pa @la -t %p == 0 (2.6) 

Pl %P - c_oza = 0 (2.7) 

PI-l I= 02a + PI t2P1 - Pmax - Pmin) =: 0 

PZ-' i@ %8 + 112 t2P% - Pmax - Pinin) z 0 
(2.8) 

(Pl - Pd (Pl %B Ia + Pa %a is) = 0 (2.9) 

Here 
plp1* = 0, !-%tPz* = 0 (2.10) 

Oia = @ix COS y + tOill sin y, Wig =I: - oiX sin T + wig co3 r (i=1,2) (2.11) 

ja = c1 cos r + 5" sin y, jfi = -5l sin y -/- c2 cos y (2.12) 

The functions aiar 6%~ and ju, js are the physical components of the vectors 
grad wi and j along the oc- and g-axes. 

The boundary conditions for the functions oi (5, y) (i = 1, 2) must be constructed 

with allowance for relations (1.5) and (1.6) (see Q]). We have 

02 (.x? rfr 6) == 02k = const at the electrodes 

w1 (5, 5 6) ix,h = aI+ = const, q (2, f 6) 1 r<_h = ol_ 1=: const at the insulators 

grad mt = grad o2 = 0 at ~fini~ 

wz+ - os_ + I,= R(o,+ -q_) (2.13) 

Relations (‘2.6),(2.7),(2.13) for the functions ol, 02 can be interpreted as the equa- 

tions and boundary conditions describing the distribution in the channel of fictitious cur- 

rents of density - Pi'. grad w2 due to the “potential difference” wgt - WZ_ + 1 at 
the electrodes in the absence of other electromotive forces. The function o1 in this case 
plays the role of the corresponding “current function”. 

3. The nscer8rry Wsierstrsar condition. The simplest way to construct 
this condition is to make use of the following expression for the increment 61 of the 

functionai f associated with the arbitrary variation 6P of the tensor P,: 

61 = - 1s [El (6P,, Z’ -I- &J za) + q1(6p,, z1 -i- 6P,, Z”)l dx dY (3* I) 
5 

Here Z', Z" are the Cartesian components of the current density vector J correspond- 
ing to the permissible resistivity tensor P = P, + 6P (from now on we shall use capital 
letters to denote permissible quantities and the corresponding small letters to denote 
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optimal quantities ; the sole exceptions will be the optimal resistivity tensor denoted by 
P, and the permissible resistivity tensor denoted by P.). 

Formula (3.1) is exact ; it is readily derivable from the initial equations with allow- 
ance for the steadystate conditions. 

Making use of formulas (2.5)-(2.7), we can transform the integrand in (3.1) into 

Introducing the dyad 
- (Pi’-grad 02) (6P. J) 

J (P,l.grad ws) 

we obtain the following formula for the increment 61 of the functional: 

(3.2) 

The functional 1 attains its maximum on the control P,if and only if the quantity 

61 is made nonpositive for all permissible 6P and J. 

The vector J occurring in expression (3.2) can be obtained by solving the initial 
boundary value problem in which the tensor PO has been replaced by the permissible 
tensor P. The difficulties involved in solving this problem are not less formidable than 

those of solving the initial one ; the condition 61,< 0 turns out to be ineffective with 

such a general method of variation. In order to obtain an effective condition we must 

specialize the variation of the tensor bP . Specifically, let us assume that this variation 

differs from zero only within a narrow strip of width b and length I , (8 = h / 1 is the 

small parameter of the problem). The permissible tensor P = P, + 6P must satisfy 

restrictions (1.7) ; it is otherwise arbitrary. 
Such a special variation clearly requires us to compute the vector J within the strip 

only ; moreover, it is sufficient to find the principal part of this vector which is linear 
ina. If the strip is sufficiently narrow and if the field of the vector j inside the strip is 

free of singularities, then the principal linear part of the vector J can be computed by 

assuming that the strip lies in the external homogeneous current field j. Clearly, the 

increment 6P can then be regarded as a constant tensor within the strip. 
The solution of the latter problem is well known. Let us assume that the strip is ori- 

ented along the axis t ‘, that it has the exterior normal n(Fig. 2), and that its resistivity 
is characterized by the tensor P = P, + 8P. If the strip 
is situated in the homogeneous field j of currents flowing 
in a medium with the resistivity Pa, then the components of 
the current density inside the strip can be determined from 
the formulas 

J,, =:- j,, J- 0 (E) (3.3) 

Jt _ jt I_ [h!$k, + b+?!Kj!, .;- f”(&) 
t1 

Fig. d 
We shall use these formulas to eliminate the vector J 

from the left side of the inequality 

Sp (W. J (Pa-‘.grad 02)) x< 0 (3.4) 

which now follows from (3.2) and is fulfilled almost everywhere as the necessary condi- 
tion of a strong relative maximum. 

Converting to the principal axes CL and p of the tensor PO we can rewrite this inequa- 
lity in the following equivalent form (where E is the Weierstrass function): 
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(3.5) 
The components J,, Jp of the vector J must be expressed in terms of jGL, ja, and 

the components p,,, pXB, p,s of the tensor P in terms of the quantities characterizing 

this tensor along its own principal axes. As a result, the function E depends on the prin- 

cipal values PI, Pz of the tensor P, on the angle h = 6~ between the principal axes 
A and a of the tensors P and Par and also on the angle (I between the principal direc- 

tion n of the normal to the strip and the axis a (Fig, d), The remaining quantities occur- 

ring in the expression for E characterize the optimal mode and must be assumed to be 
fixed. 

Carrying out the necessary computations (see Appendix), we arrive at the following 
equivalent expression for inequality (3.5) : 

%343IWhW-- PI - Qz) COS 281 -I- ja(Pl - pl) sin 28 

Let us investigate inequality (3.6). In accordance with conditions (2.10) we must 

discriminate between 

1) nonsingular modes : p1 + 0, p2 # 0; pl* = p2* =r 0; 
2) modes singular in one of the controlling functions pl , pa: p1 + 0, p2 = 0 

(so that p I* --= 0) or pz + 0, pl = 0 (so that pa*= 0); 
3) modes singular in both controlling functions p 1, pz : here px = ~2 = 0. 

The latter class of cases must be excluded forthwith. since Eqs. @.6)-(2.8) imply in 

this instance that o1 = con,&, ~2 .= con&. , which is a variant devoid of interest. 

4. Non~~ngul~r modss, The controiIing functions Ql, p 2 can assume the 

limiting values pmax or p min Only. Let us suppose that the control mode is essentially 

anisotropic, i. e. that p I #= p 2. 
Now, setting first h = 0, P, = pl, Pz -L ps and then h = 0, P2 = p 2, 1’1 + Qr 

in (3.6) and recalling (a. 9), we arrive at inequalities characterizing the possible modes : 

Pl zL- Pmax, Pz =r Pmin, if ja%a>O, jbOz~.<O (4.1) 

Ql L=- Qmin, P2 z Qmar , if jcrQcr < 0, iho+ 20 F.2) 
Conditions (4.2) can be obtained from (4.1) by interchanging the roles of the axes oc 

and p. 
Inequalities (4.1)* (4.8) are necessary to the fuifillment of inequality (3.6) ; let us 

show that they are also sufficient. Considering conditions (4. l), we compute rhe left 

side Of meqUality (3.6) pt J Qmax, Q2 = Q&n* Making use of formulas (3.7) and 

(2.9),we obtain 

N :-_ “- Pmax ja 02~ [P, + pmax + (P, - pmax) COs 2el -1. 
Pmax 
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+ 
pa - Pmin 

ja ($28 [ PI -1 Pmin - (Pl - Pmin) Ws 2el - 
(cont.) 

Pmin 

-- (Pl - P2) (ia w2a -jpap)(l- cos2h) 

The inequality &? < 0 must be fulfilled for all permissible PI, Pz, 8 and A. We 

have 

maxi iFif = 

M(h = O), if P1> Pz 

M (h = 0) - 2 (PI - Ps) (ia Wsa - h %?A if Pl<P2 

It is easy to show by direct computation that the inequality maxh n/l < 0 is fulfilled 

in both of the above cases whatever the permissible values of PI, P, and 8. 

A similar conclusion can be drawn in respect of mode (4.2). 

The above analysis shows, among other things, that in this case the orientation of the 
strip of variation has no effect on the form of the minimum conditions. This fact (which 
also obtains in the other cases analyzed below) is due to the anisotropic character of 
the control variation. Inside the strip the optimal tensor P, is replaced by the permissi- 
ble tensor P with new principal directions which can be arbitrary ; thereafter, rotation 
of the strip itself does not alter the result in any way. This statement does not apply in 

the case of the problem with a scalar control (see Q, 21). where the optimal scalar func- 

tion p is replaced by the scalar control P in the strip of variation ; moreover, the slope 
of the strip occurs explicitly in the formula for the increment of the functional (as the 

sole factor characterizing the variation anisotropy). The way in which this affects the 
final form of the mimimum conditions in the problem with a scalar control is discussed 

in PI. 
Returning to the matter of nonsingular anisotropic modes, we conclude that they can 

be characterized by the relative disposition of the vectors j, grad 0s and the a- and 

p-axes (see Figs. 3 and 4). The vectors j and grad 02 lie in the neighboring quadrants 

separated either by the a-axis (mode (4.1)) or by the p-axis (mode (4.2)) (by the axis 

corresponding to the principal value p max of the tensor P, in both cases). 

P 

grad mt 

tiZ!& 

Let us consider the possibility of nonsingu- 
lar isotropic modes. To be specific, let 

p 1 z pz -;= prnlx. Then, clearly, 

jY% > 0, j:? 023 a 0 (6.3) 

These inequalities are readily obtainable 

from (3.6) by setting h =0 and then Pa = (J 21 

a! I?, =#= pl and PI z pl, Pz’+ pz in that 

Fig. 3 Fig. 4 
order. 

On the other hand. Eq. (2.9) is satisfied 
identically for or = ps = omax , since any pair of mutually perpendicular directions 
can be regarded as the principal directions in the isotropic mode. This implies that 
inequalities (4.3) must be fulfilled for any pair of mutually perpendicular directions a 
and /3. This is possible only if the vectors j and grad m2 are related by the equation 

. 
J --:z 14’ grad wy (4.4) 

where F := F (x, y) is a nonnegative function. 
It is not difficult to verify that the inequality M .< 0 is fulfilled in this case. 
The case p1 = p2 m= P!nl,l can be disposed of in similar fashion; the function F is 
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nonpositive in this instance. 

It is interesting to compare condition (4.4) with the condition ofrealization of the 

control p T= prnax in the problem with a scalar control. In fl] we showed that this con- 
dition can be written as 

r,< arc COY p, p z (Fmax - Pmin) / (Pmax + Pm,*) (4.5) 

where X. is the angle between the vectors j and grad 0s. Comparison shows that (4.4) 

is equivalent to the requirement that x = 0. If this requirement is fulfilled, then inequa- 

lity (4.5) is satisfied ; the converse statement is not valid. This conclusion is quite natu- 

ral: considering anisotropic variations in the neighborhood of an isotropic control, we 
necessarily arrive at a stricter minimum condition. 

6. Singular modcr. Let us suppose that ~1~ # 0, pz = 0. Equations (2.8) 
imply that jam28 = 0. Let co28 = 0; eliminating the trivial case ozX = 0, we infer 
from Eq. (2.9) that ie = 0. Conversely, if ja = 0, then. eliminating the trivial case 
& = 0, we infer from (2,9) that wa8= 0. 

Thus, the special case Ok-, = 0 is characterized by the fact that at the same time 

jJ = 0, i.e. that the vectors grad o2 and j have the same direction as the principal 
axis a of the tensor P,. The sign of the scalar product j. grad w2 is easy to determine 
by means of inequality (3.6) ; we obtain 

Pr = Pmax, if iZ o,, > 0 (the vectors j and grad of are parallel) 

1_‘1 = ,Pmin, 1 -f ja a,, < 0 (the vectors j and grad oa are antiparallel) 

The control psis arbitrary in the singular mode under consideration. This fact is gene- 

ral in character and is a consequence of the fact that if the vector j is directed along 
one of the principal axes of the tensor P,,, then Eqs. (1.4) do not depend on the principal 

value corresponding to the other principal axis (to prove this we need merely write out 

these equations in the principal axes of the tensor P ,, ; see formulas (A. 10) in the Appen- 

dix). The singular mode pl = 0, p2 # 0 can be disposed of in similar fashion. 
The reults of the last three sections can be summarized as follows. 

Theorem. The optimal controls in the problem of Sect. 1 are characterized by the 

following possible modes. 
1. Nonsingular controls 
la. Anisotropic 

Pl Z Pmax, Pz = Pmin7 if j&a > 0 1 jfa,y -< 0 

Pl = Pmin, f32 = Pmsx, if jiccqa<OO, jbo2:>0 

lb. Isotropic 

Pi = P2 = Pmax, if j =- F grad 02, F > 0 
PI z P2 = Pmm9 if j= Fgrado,, F,<O 

2. Singular controls 
2a. 02a =1 0, ja = 0 

Pmax, if ja%a > 0, 
Pl = 

Pmin9 if jaWa,1 (, 0, 
P2 is arbitrary 
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2b. tisa = 0, ja = 0 
Pmax, if jbwsfi > 0 

p1 is arbitrary ; Pz = 
Pmin+ if jfio,;i< 0 

In both of the latter cases we can assume, in particular, that pz = pl . This results 
in an isotropic conaol mode. 

6. The Weiet8trr,c=Erdmrnn condition rnd the Wsierrtrr,, 
condition. Let us consider the Weierstrass-Erdmann condition, which is fulfilled on 
the line separating domains with different control modes in the variables pl, Pz, y. 
Assuming that this line is sufficiently smooth, we can write the Weierstrass-Erdmann 
condition in the form [3] 

@1t [z,ll_.+ i- %L [z,21_+ = 0 (6.2) 

The symbol [ ]I denotes the difference between the extreme values of the correspond- 
ing quantity to the left and right of the line of separation; t and n are the unit vectors 

of the tangent and the normal to this line. The derivatives 01t and WZ~ are continuous 
at the line of separation. It does not matter therefore on which side of the line the ex- 

treme values of these derivatives are taken. 

Let us transform Eqs. (6.1). converting to the local Cartesian coordinates a, P (differ- 

ent on each side of the line) by means of formulas of the type (2.11) and (2.12). We 
assume that the function VB is continuous. Taking account of the continuity of the 

derivatives tilt, Ost and making use of Eqs. (2.6). (8.7), we can rewrite condition (6.1) 
in the form [6hja co9 0 + 6k3jfi sin2 8 + (pl/pz) 02sjJ sin 6 cos 8 + 

+(pzIpl)w2,j~s’n0cos8]_+- [o,,j,s:n”i3 +ap?jj cos2f3 - 
- w,g ja sin 0 cos 0 - m,,je sin 8 cos 8 J_+ -= 0 (6.2) 

In carrying out further transformations of this equation we must bear in mind the pos- 
sible differences between the control modes on the two sides of the jump line. Let us 
consider several of the possible cases. 

la), (la): both modes are nonsingular and anisotropic; here 

PI+ = Pmaxl Pa+ = Pmin; PI- -= P.nin, P2- = Pmax (6.3) 

Making use of steadystate condition (2.9) for the left- and right-hand exaeme values, 

we can reduce (6.2) to [cOS20 (jruss _ jeoae)]_+ = 0 (6.4) 
la), (1. b) : anisotropic and isotropic modes ; here 

Pl+ = P-naxr P2+ ‘= Pd.& PI_ = Pmax, Pa_ = Pmax (6.5) 

Steadystate condition (2. 9) is effective for an anisotropic state only. It is satisfied 
identically in the case of an anisotropic mode. We obtain 

[ cos 20 (j&Q - jpo,fi) J_+ - sin 23_ ( jxma3 + jfio.21)_ = 0 (6.6) 

This result does not depend on which extreme values (pmax or Pmin) the functions 
PI, Pz assume to each side of the jump line (within the limits of combination of con- 
trol modes (la) and (lb), of course). 

lb), (lb) : both modes isotropic ; here 

Pi+ - Pmax, PAL = PInax; Pl- = Pdin, Pz_ = P,nin (6.7) 

Condition (6.1) can be written as 

[ cos 20 ( jsaQr - j30,3)LT -j- [sin 23 (jdiw t jf~~~~)]_+ = 0 (6.8) 
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similar formulas characterize the lines separating singular and nonsingular modes, etc. 

Relations (6.4). (6.6), (6.8), etc.must be made compatible with steadystate conditions 
(2.9) and Weierstrass inequalities (see the Theorem above) which the extreme values of 
the vectors j and grad wa satisfy. The requirement that these relations be compatible 
isolates certain combinations of extreme values which satisfy all of the necessary mini- 
mum conditions. 

We can obtain the necessary expressions by making use of formulas (A. 11) of the 
Appendix which relate the extreme values of the components of the vectors j, and j_ 
and also of the vectors (grad 02)+ and (grad ~a)_. 

Let us consider the transition (la), (la) defined by (6.3). Making use of the afore- 
mentioned formulas, we construct Eq. (2.9) for the minus-extreme values ; after trans- 
formations carried out with due allowance for condition (2.9) for the plus-extreme values, 
we obtain the equation 

PnlinPmaxa cos (0, - 0-J (j&21X - jb@ZP), =- 0 (6.9) 

a = Pmin sinELCos8, - Pmax COS8_ sin 8, 

Equation (6.9) shows that two cases are possible: a = 0 and (j40zcL - jpone)+ =0 

(the case cos (0, - f3_) = 0 is trivial, as it corresponds to the absence of a jump). 

On the other hand, the Theorem implies fulfillment of the inequalities 

(jG~sz)+ > 0, (iem&, < 0; (j;losl)_ t< 0, (iao26L > 0 (6.10) 

We can use formulas (A. 11) of the Appendix and conditions (2.9) for the plus-extreme 
values to transform the second pair of the above inequalities into 

(jaaSa)+ PmaxPmin co.+ (0, - e._) + aa (i02a)+ c< 0 (6.11) 

(i@za), PmaxPmin coS2 (8, - e_) + a2 (L~2b)+ > 0 

If a = 0, then these inequalities are compatible with the first pair of inequalities 

(6.10) only in the case (jrrmsa)+ = (jao2b)+ = 0. The same statement is valid when 

(jamPa)+ - (jaoss)+ = 0. Recalling formula (2.9) for the plus-extreme values, we con- 

clude that the following conditions are fulfilled on the line separating nonsingular essen- 
tially anisotropic modes : 

either j, = j =’ 0, or (grad 02)+ = (grad 61~) = 0 

Let us consider the transition (la), (lb) in accordance with (6.5). We must have 

(see Theorem) (6.12) 

&%4+>0, Wd+<O, (L)_ = Wd, (ib)_ = Wb3)-9 F>O 
If F > 0 , then, proceeding as in our derivation of relation (6.9), we obtain the 

equation Pmax ljaoae)+ - Prnln (ij3wza)+ = 0 

Comparing this with condition (12.9) for the plus-extreme values, we obtain 

(jawa& = (iao2,)+ = 0 

This implies that either (je)+ = 0, (~~a)+ = 0, or (ia), = 0 , ( coZa)+ = 0. 
The second possibility together with the condition (jPozB)+ < 0 yields the inequality 
(ja opa)_ < 0 (this is easy to show with the aid of formulas (A. 11) of the Appendix). 
The latter inequality contradicts the condition F > 0 (provided we leave aside the tri- 
vial possibility of simultaneous fulfillment of the conditions (ja)+ = (a%~)+ = 0). 
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It remains for us to investigate the case (ia)+ = (ass), = 0. It is easy to show that 
relations(6.12) are fulfilled in this case. By analogy with the foregoing analysis, we find 
that (j&a)- >O, (iP)_ = (%3)_ = 0 

We see therefore that the vectors j and grad a2 experience no change either in 

magnitude or in direction in passing from the isotropic control mode domain into that 
of a nonsingular essentially anisotropic mode, The reason for this lies in the fact that 

the direction of the aforementioned vectors at the line of separation on the anisotropic 

mode is the same as that of the principal axis along which the resistivity remains the 

same as in the isotropic mode zone (in this case p,,,x). 

Let us consider the transition (lb), (lb) in accordance 
(A. 11) of the Appendix and the Teorem to this case, we 

must have either 
j+ j_ :-~ () 

OK 
(grad oz)+ = (grad wz)_ 

with (6.7). Applying formulas 
find that at the jump line we 

-0 

These conditions are the same as the corresponding conditions at the line separating 
two nonsingular anisotropic modes ( *). 

The conditions at the lines separating nonsingular and singular modes, etc., can be 

obtained in similar fashion. 

7. The asymptotic ~888 pIllax = 00. Here and in subsequent sections we 
shall consider the case where the upper limit pma~ in inequalities (1.7) is equal to 

infinity. We propose to construct asymptotic equations describing the optimal mode and 
to describe some of the principal properties of the optimal control. 

Let us consider steadystate condition (2.9) with reference to the control y, 

f)lj&28 i- p&waR = 0 

Converting from the principal axes a, fi to the Cartesian axes 2, y , we can rewrite 

this equation as 

M2%X +- P2b2Y) WY - (Pl + P2) (%,5” -- %.z) tg r - 
-- (P1%!,51 pi- P2wr52) = 0 (7/l) 

The Theorem formulated and proved in Sect. 5 enables us to set down a ruIe for choosing 
the roots of this equation. If the limiting values pmax, Qmin are both finite, then direct 
computation (see Appendix) shows that the root (tg JT)~ (the upper sign in the formula 
for the roots) corresponds to the inequalities jl~r;l > 0, jB(,)Lp .< 0, and the root 

(tg y)r (the lower sign in the formula for the roots) to the inequalities ja wzx -<, 0, 
jpo2p > 0, According to the Theorem we must take p1 = pmax, p z = pmin in the 
first case and p 1 = pmin, Q a = omax in the second. 

*) The need to make the Weierstrass-Erdmann condition compatible with the Weierstrass 
condition on both sides of the jump line also arises in the case of a scalar control p, 21. 
This requirement implies the following condition : the normal II to the jump line must 
be the bisector of the angles Xc between the vectors j and grad o2 on both sides of the 
jump line. The angles Q are given by the equations 

xi- = arccos p, x == 7C - arccos P, P Z (Pmar - Pmi*)/(Pnlax + Pmin) 
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It can be shown directly that under these conditions both r6ots of Eq. (7.1) determine 
the same pair of principal axes, This agrees with the fact that Eq. (7.1) is invariant 
with respect to the substitution tg y - Ctg y, ~1 --$ pz, pz -+ pl. From now on we 

shall take the root (tg v)~ without further qualification. 
Let us suppose that pmax -+ 00 for a fixed pr~in. In this case the root of Eq. (7.1) 

tends to the following limiting values (*) : 

(Q-do = { 
(%/ I %r)O, if (j.grado,)o>O 

-(Cl/ C2)O? if (j.grado,),<O 
(7.2.) 

This result implies that the principal axes in the limiting case are oriented in such a 
way that either the vector grad Q is parallel to the principal direction associated with 

the principal value pmax, or the vector j is parallel to the principal direction pmin. 
It is natural to expect that in the first of these cases j.grad o2 = 0 in the limiting 

case. since the vector j cannot have a component in the principal direction correspond- 

ing to an infinitely high resistivity (this statement will be proved below). We must there- 
fore take the equation j.grad 0 2 = 0 instead of the first inequality of (7.2). 

The second possibility has to do with the fact that the scalar froduct j . grad u2 is 
generally different from zero and negative. This is easy to see by recalling the interpre- 
tation of grad w2 as the fictitious electric field intensity vector in the problem for 

adjoint variables (see Sect.2). Whereas the vector j (the current density) in the limit- 

ing case has a component along the principal direction pen only, the vector grad w2 

(the electric field intensity) generally has components in both principal directions. 
This means that the inequality sign applies in the second expression of (7.2) in the gene- 
ral case. 

8. The o8ymptotic form of the optlmrl mode equations.Thedis- 
tinctive featureof these equations consists in the fact that they are of different form in 

those parts of the basic domain where the signs of the scalar product j . grad 02. are 
different. This conclusion can be readily arrived at on the basis of certain preliminary 

physical considerations and formulas (7.2). 
Let us consider the matter in more detail. 

Let us suppose that the resistivity of the medium is constant and isotropic (P, = ~1, 
p = const, I is an identity tensor). The vector lines j and grad 02 for this case 

are shown in Figs. 5a and 5b, respectively (Fig. 5c shows the corresponding graph of the 
magnitude B (x) of the magnetic induction vector; we assume from now on that the 
function B (x) is defined by a graph of this type). 

Limiting ourselves once again to an isotropic (but inhomogeneous) resistivity distribu- 
tion, we assume that the resistivity in some domain (e. g. the domain CEcc’ E’c’ in 

Figs. 5a and 5b) is pmin = const,, and that the resistivity in the remainder of the domain 
(to the left of C’E’C’ and to the right of C EC) is pmal = const. Assuming that 

the topological structure of the lines j and grad 02 remains unchanged (except for the 

refraction of the lines at the boundary separating the domains), we find that this distribu- 

*) We are taking the limit with respect to the parameter p = pmin/pmax which occurs 
explicitly in Eq.(7.1) ; the quantities 51, 52, oty, ogy occurring in formula (7.2) depend 

on p. This fact is reflected in the symbol ( )o used to denote scalar products. 
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tion to some extent agrees with the theorem of jJl] characterizing the optimal disposition 

of the vector lines in the problem with an isotropic control. 

Fig. 5 

In fact, the scalar product j. grad o2 is negative in the middle zone and positive in 

the side zones. The conditions of the theorem of n] are then violated in the neighbor- 

hood of the lines CEC and C'E'C' which serve as the control discontinuity lines in the 
problem with an isotropic control. It is also necessary for the Weierstrass condition to 
be fulfilled arbitrarily close to these lines , which means that this condition must be 
made compatible with the Weierstrass-Erdmann condition fulfilled along the lines of 
separation themselves. The conditions necessary for compatibility are set out in the 

footnote of Sect. 6. It is readily apparent that they cannot be fulfilled in the present case. 
In fact, in the asymptotic case ~1 --+ 1 it is easy to point out limiting positions (which 

vanish for p = 1) of the discontinuity lines CEC, C'E'C'. To do this we need merely 

superimpose Fig. 5a on Fig. 5b (both corresponding to the case p = const) and connect 
with a smooth curve the points at which j-grad w 2 = 0 ; this will be the required curve. 
It is also a simple matter to find the analytical equation of this curve. If the above con- 

ditions could be satisfied, then they would be satisfied for lr = ‘l by the exact solution 

corresponding to this case (e. g. see [4]). A direct check shows that this cannot happen, 
however. 

The above fact obliges us to renounce attempts at finding the optimal solution in the 
class of isotropic solutions and requires us to include anisotropic controls P in our dis- 

cussion ( * ) . 
This broader class of controls is remarkable in the fact that it enables us to alter the 

configuration of the vector lines j and grad 02 by altering the angle Y characterizing 
the orientation of the principal axes of the symmetric tensor P,. We can assume here 
that the optimal solution is devoid of any control discontinuities ; continuous variation 
of y can yield the required configuration of vector lines, while the appearance of dis- 

l ) We spoke of positions of the lines separating the domains with differing values of the 
control as being asymptotic as f~ 4 i . This statement is not quite accurate: we can- 
not speak of asymptotic positions of nonexistent lines of separation. Our precise mean- 
ing will become clear below. 
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continuities entails certain rigid conditions which can be satisfied with great difficulty 
only (see Sect. 6). 

Let us consider the asymptotic form of our basic differential equations. 
The processes in the channel are described by system (1.4), or, which is the same thing, 

by the system 

z,l = prJcztr2 - pryzXa, .zyl = plrXz1;2 - pv+z,a + c-lVB (8.2) 

to which we must add the equations for the adjoint variables 

PlP2%c = PXY@ZX -Pxr"2yr PlP2% = Pvl/~2x- PUXWZY (8.2) 

The Cartesian components p xX, p xy = p yx, p 1111 of the tensor P, are related to 
the principal values pl, ps of this tensor and to the angle y by formulas (1. I). 

In seeking the asymptotic solution we shall assume that the quantities zX1,. . . . , 02@ 
tend to finite nonzero limiting values as pmax -+ 00 , Let us set 

tgy = @gY)* +!Jm +o (cl”) (8.3) 
This expression is the expansion of the root of Eq. (7.1) in powers of the parameter CL, 

We note that the quantities cl, . . . . w2y occurring in this equation must be given their 

exact values corresponding to a sufficiently large finite value of pmax ; expansion (8.3) 

must be effected in the parameter I_& occurring explicitly in the coefficients of Eq. (7.1). 
Hence, for example (see the footnote in Sect. 7) 

(tgJ’)o # tg Yo, but (tg y)o 4-Q ~0 as p -+ 0 

We obtain the following expansions for cos 2 y, sin 2y : 

cos 2y = (cos 2y), - m (sin 2y), [I + (cos 3401 c1 + 0 @"I (8.4) 
sin 2y = (sin 2y), + n (Cos 2y), 11 + (cos 2y)J p + 0 (p”) (8.5) 

The need to retain terms of order p in these formulas is dictated by the structure of 
Eqs. (8.1). (8.2). In this connection we must bear in mind the fact that, according to the 
above remark, the quantities (cos 2y),, (sin 2y), can also be exbanded in series of the 

form (cos 2y), = cos 2y, f 0 (p), (sin 2y), = sin 2% 5 0 (P) 

In computing the values of (tg y). and m we must use the first formula of (7.2) for 

those points where (j . grad O& > 0 and the second formula for those points where 

(j-grad wrJo < 0. Aft er some simple operations we obtain 

(tgr), = 3 I 
(grad z?)n (grad wz .grad a?) 

m=- 
(m2!,zr2 - WQg2) (z,‘)” (8.6) 

for the domain where (j. grad ~2)~ < 0 and 

for the domain where (j. grad us)0 > 0 . 
It is now an easy matter to write out the required asymptotic equations. Let us consi- 

der the case (j . grad ma)@ < 0. Substituting expansions (8,4), (8.5) into Eq. (8.1) and 
making use of formulas (8.6), we find that the coefficient of pl = prnax in the right 

side of Eqs. (8.1) vanishes identically. We must pass to the limiting case p = 0 in 
the remaining terms. The expressions for z,l,. . . . , 02~ then become the correponding 

limiting quantities for which we retain the previous symbols zX1,.-., 02~. As regards 
Eqs. (8.2). the coefficient of p 1 = p max in the right side of each of them is not equal 
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to zero ; dividing both sides of each of these equations by pmax, we pass to the limiting 
case p = 0. This gives us the equations describing the optimal process in the domain 

j-grad oz ,< 0, 

In the domain where j-grad 02 >, 0 we have the equations (*) 

In these formulas 
(x.,la) 

8. The o:ymptotic rolutfon in the domain j.grad w2 < 0. Let us 
consider Eqs. (8. 8) and (8.9) in more detail. The latter pair of equations implies that 

z2 = h (WI) (9.1) 
where h (ml) is an arbitrary function. 

Equations (8. 9) are equivalent to the system 

(I& =; Plnin o)llr - ( @1x VI 02, z - f).nin (WIx ~1 NI,K) (9.2) 

The set of equations (8. B), (8.12) and (9.2) is obtainable in a simpler way. Let us 
assume from the very beginning that p 1 = p malt = 00, pz = pmin. The basic 
equations of the problem can then be written as 

0 mm_ ZJj2 cos y - zX2 sin r (11.3) 
ZU1 i’D.5 y - Z.,‘siil y .Z -- 1) Illh i;,‘yill y t_ LX2 CD3 r) + c-‘VR 503 r 

The first of these equations expresses the equality to zero of the component of the 
vector j along the cc-axis; the second equation expresses the differential Ohm law along 
the b-axis. 

An equivalent expression of system (9.3) can be obtained by complementing the equa- 
tion tgy q/z; (9.4) 
with the system 

z; rm P,,~,, z;, I- il),l,i,,z:K, 51 _- 
‘I ~),~,i~~z~ + ,Orlli!iz:, K -t- c-l I/” (9.5) 

where K represents an arbitrary function interpreted as a control. 
The next step is to pose the initial optimal problem for system (9.5). The Euler equa- 

tions then become 

ogY = P 1,111, (WI,, -- o,.$L Q -= 2’ - Plnitl (OL,x + o,{j K, (9.6) 

The steadystate condition with respect to the control K gives us the equation 

*) Equations (8.10),(8.11) imply that j.gratl o5 -+ 0 as P~,~~-+A’- 
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z2 = h (01) (9.7) 
It is clear that Eqs. (9.5)-(9.7) are equivalent to Eqs. (8.8), (8.12). (9.2). 
Let us rewrite the basic equations in a form more convenient for future use. To this 

end we eliminate the function z2 from system (8. 8) with the aid of (9.1) to obtain 

Z: == Pmin h’ (o,i (al, + aIxK), 21 =o u L in&’ (%I (yuK - Q) + c-l lfg (9.8) 

Eliminating the function z1 from this system, we obtain the equation 

h’ (01) [Aa, + alxKu - alyKxI + h” (~1) (grad 0~)’ = (CP,in)-l VBx (2) (9.9) 

On the other hand, system (9.2) generates the equation 

Au, = o&, --- oly K, 

This equation together withi9.9) yields the relation 

2h’(01) Aa1 + h” (a) (grad a)” = (cpmdl V& (z) 

(9.10) 

(9.11) 

If the function h (ol) is known, then Eqs. (9.10) and (9.11) together with the corre- 
sponding boundary conditions determine the functions w1 and K. 

Let us consider the boundary conditions at the electrodes. The necessary conditions 

21 = z: - = cons& 02 = 02+ = const for 1x1 <h, y = -+ 8 

imply the formulas (see (9.2) and (9. 8)) 

h’ (01) (6& + 0JC) = 0, 6& - O$ = 0 

which are valid along the electrodes. Disregarding the trivial possibility that h’ (01) =O 

(which means that jv = (_I at the electrodes), we infer from this that the following equa- 
tions are valid along the electrodes: 

01y = 0, K=O (9.12) 

Thus, the current lines j (and along with them the principal directions p) must be 

normal to the electrodes. Symmetry considerations indicate that relations (9.12) are 
fulfilled along the r-axis as well. 

The insulating walls of the channel are the current lines j; this fact is expressed 

mathematically by the equations 

a1 (z, f a) Ix<_-A - a,_ = con& o1 (2, f 6) Ir.h. T= ol+ = cob (9.13) 

The symmetry of the problem indicates that the segment AA (Fig. 5a) is also a cur- 

rent line; we have 
o1 = 1/2 (wl+ + ol_) (along AA) ((9.14) 

It remains for us to write out the equations relating the values of the functions 01 and 
la (ol) with the parameters of the external circuit. These conditions are of the form 
(see formulas (1.6) and (2.13)) 

z’, - z’ = R (2: - zz), 0 2t -w,_+l==R(o,_-‘~,_) (9.15) 

We can transform these two equations by means of formulas (9.2). (9.8) and (9.14). 

Let us consider the current line L (aI = const) connecting the electrodes and compute 
the line integral 

s ‘o .ds +~,,dy 
L :‘s 

along this current line. Making use of Eqs. (9.2). we obtain 
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Substituting this result into the second,equation of (9.15). we find that 

pmin 5 Wll/ dx L OIU dy = K (cl++ - ol_) - 1 
L 

(9.16) 

In exactly the same way we can use Eqs. (9. 8) to obtain the formula 

P& h’ (4 1 Q&, dx - (Q$P = R [h (ml+) - h (@,_)I - c-l 1 VB dy (9.17) 
L 

Combining (9.16) and (9.17)‘ we obtain the formula 

h’(q)= K(o lo )__1 (H~h(o,+)--h~,_~l---‘p~~} (9.18) 
1t-- l- L 

which defines the function h ( ol) implicitly. Complementing condition (9.18) with 

Eq. (9.16) taken from the parameter value o1 = (i/s) (c)r+ + mi_) and adding the 

remaining boundary conditions to this combination, we obtain the complete system of 
relations which together with (9.11) and (9.10) determine the functions a1 and K. We 

assume here that the function 01 cannot take on values outside the interval [ OI_, WI,]. 
If this condition is not fulfilled, the picture is made more complicated by the appearance 
of closed current lines. 

Note. If condition (9.18) is fulfilled, then it is sufficient to take Eq. (9.16) for a 
single value (e. g. 0r = 1/z (wr+ + ol-) ) of the parameter Q, since its validity for other 
values follows automatically. 

To prove this let us integrate both sides of Eq. (9.11) over the domain z bounded by 
the two current lines 

Lo (01= (l/Z) (a+ + w)), Ll (01= alo), (l/z) (Wl+ + Ol_) < a0 Gal+ 

and by the two electrode segments (Fig. 6). Making use of Eq. (9.18) and condition(9.16) 
taken for the parameter value w1 = (I/*) (or+ + or_), we can 

/ 

k 

write the result as _-- 

cs ti 
[h’ (or”) + h’ (or) ] Aordsd?~ = 0 

c 
Lo c Ll 

X This equation is valid for any domain 2 of the indicated 
type, which means that the integrand in the above expression 
can be written as d 

ay( wx) -; (UOl,) 

Fig. 6 
(where the function u vanishes at the electrodes). From this we 

can readily infer the required result. 
The initial requirement that (j .grad us)0 ( 0 becomes the inequality j. grad oz< 

< 0 in the limiting case ; formulas (9.1) and (9.2) imply the equivalent condition 

h’ (01) > 0, v’o1 E (Ol-, 01,) (9.19) 

If we also assume that the optimal solution is such that inequality (9.19) is fulfilled 
throughout the domain through which the currents flow, then, summarizing our results, 
we arrive at the following problem. 

We are required to find the function w1 (s, ZJ) which satisfies Eq. (9.11) under bound- 
ary conditions (9. U), (9.13). the condition 8 

- Pmin S 

(9.20) 

qx (0, Y) 44 =- 11 (y ,_ - q) - ‘1 
-6 
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and additional requirements (9.18), which together with inequality (9.19) determines 
the function h (or). The integral in the right side of Eq. (9.19) must be taken along the 
current line L corresponding to that value of the parameter r_ur= const which serves 

as the argument of the function h’(o,) on the left side of this equation. The current 

lines o1 = al+, or = wr- are critical: the function h’ (or) equals zero along these 
lines. 

Once the function or (5, y) has been determined, Eq. (9.10) together with the Cauchy 

condition K (x, i_ 6) ,,., < A = 0 (see (9.12)) determines the function K. 
If the function B (x) retains a constant value B, over some range of values of the 

argument, then the problem can be simplified somewhat. 
Let us consider the current lines L lying entirely in the domain where the condition 

B (x) = B, = const is fulfilled. Formula (9.18) indicates that the function h’ (or) 

assumes one and the same constant value on such lines ; Eq. (9.11) reduces to the Laplace 
equation in the corresponding domain. But Eq. (9.10) then has the integral 

K = f(o1) (9.21) 
where f (or) is an arbitrary function. Since the domain B (x) = B, = const includes 
the electrodes (*) (Fig. 5c) along which K = 0, it follows that we must set f z 0, 
i.e. K 3 0 , in formula (9.21). 

This result implies that the optimal control is isotropic and equal to pmin = const 
in the domain occupied by the current lines lying entirely within the zone B (2) = 
= B, = const. Anisotropic controls are characterized by nonzero values of the function 

K; the control is anisotropic in the domains containing current lines some part of which 

lies in the zone B (x) # const. The thick curve in Fig. 5d is the current line which 
separates the isotropic and anisotropic control zones. The current lines BCCB and. 
B’C’C’B’ are critical. 

Our supposition of the existence of critical current lines can be substantiated by ana- 

lyzing formula (9.18). The first factor appearing in the right side of this equation is 

always negative (it is the inverse difference between the voltage drop between the elec- 
trodes in the problem for adjoint variables and the external unit electromotive force 

which produces this voltage drop). As regards the second factor, its sign generally depends 

on the choice of the current line L. Let the function B (5) be defined by the curve in 
Fig. 5c, and let V = V (y). If the current line lies wholly within the zone where 
B (x) = B, = const, then the expression in the numerator is negative (it is clear that 

the term R [h (al+) - h (or-)] does not exceed the expression 
s 

& - 
C s Vdy 

--s 

if the function B (5) is defined as in Fig. 5c. since this term does not exceed the above 

expression even if B (z) E B, = con& everywhere in the channel). On the other 
hand, if the current line (connecting the electrodes in accordance with our hypothesis) 

lies in large measure in the domain B (x) = 0, then the numerator of ratio (9.21) is 
positive. The latter variant must be discarded as one which contradicts inequality(9.19). 

*) This statement follows from the above supposition whereby there exist current lines 
which connect the electrodes and lie entirely in the domain B (G) i- BO = comt. 
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This implies that the current lines in the adopted arrangement do not penetrate far enough 
into the zone of decay of the field B (s) ; moreover, it is possible for the entire domain 

occupied by the currents to be bounded by the critical lines BCCB and B’t?‘t?‘B’ 
(along which h’ (or) = 0 ) and by the electrodes. Outside this domain either the topo- 
logical structure of the current lines changes (this change being manifested in the appear- 

ance of closed lines) or the process is described by Eqs. (8. lo), (8.11) corresponding to 

the case j . grad a2 > 0. It is remarkable that none of these possibilities has any effect 
on the final result, since the condition h’ (wr) = 0 at the critical current line is suffi- 

cient to determine this line regardless of what happens on the other side of it. Nothing 

prevents us from assuming, for example, that the channel outside the domain CCC’C’ is 
filled with a homogeneous isotropic insulator p = 00, so that there are no currents at 
all outside the domain Ccc’c’. 

The coefficient of the principal part in Eq. (9.11) vanishes at the critical current lines. 
The control is always anisotropic sufficiently close to these lines, since the critical lines 

necessarily extend beyond the zone B (x) =. B. = const. Such small neighborhoods 
of the critical lines are not. however, characterized by rapid variations of the function 

01. In fact, the derivatives OX%, 01~ assume finite values along the critical lines (this 
follows either from formula (9.16) or from formula (9.17) with allowance for the fact 
that the factor h’ (w%) and the expression on the right side vanish at the critical lines). 

A p p e n d i x . Concerning rhe derivation of inequality (3.6). Let us transform the 

expression in square brackets in the left side of inequality (3.5). The components J,, 
Ja of the vector J can be expressed in terms of the components J,, J, by means of the 

formulas (Fig. 2) 
J,=J%cosO-Jtsin8, J, = J, sin 6 -+ J, Cos 6 (A.l) 

Replacing Jn, ff by their expressions (3.3), we obtain 

Ptt - Pa . 
J,=iz-- p lt sine - ~‘172 - Ptn p ln sin e + 0 (E) 

ii tt 

bt .- Ptt 
JBiiB+ p it ~0s 8 + 

h, - p*?a 
p h ~03 e + 0 W 

tt tt 
The following formulas are valid (see (1. I) and Fig. 2) : 

P,t = I/.! [Pl + Pa - fpl - Pr) cos ael, P,, = 11% [ p1 + P2 - (PI - p:) cos 291 

P ?Lrl = 1/L ip1 + p-r + (PI - p2) cos ze], . I?,, = lj2 [pl + Pa + 0% - P2) ~0s WI (A.3) 

E’tn =z.z P,t = - 1,: ipl -Pi) sin 28, P,,> = Pn, = - ‘1~ {PI - Pz) sin 39 

We can use these relations to express the right sides of Eqs. (A. 2) in terms of the prin- 

cipal values ~1, oz. PI, PZ of the tensors P, and P and in terms of the angles 0 and ‘111 
between the normal 11 to the strip of variation and the axes a and A , respectively. We 

obtain 

Ja = [PI -+ Pz - (PI - Pz) Cos 2$le1 (m - 2 (PI - P2) jn sin * sin (9 - 9)) f-4.4) 
Jg = [P, -i_ P, - {PI - P2) COS .?#I-' {a - 2 (PI - P,) jn COs hp sin (6 - *)I 

(the terms 0 (E) are omitted from these and subsequent expressions). 
In these formulas (6~~ = Pi - pi, i = 1, 2) 
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m = i, [PI + PZ - (PI - Pz) cos 281-2 sin 9 [6pli, sin 0 - Gpzjs cos 61 (A.5) 
n = ie IPI + P2 - (PI - P9) cos XI]+ 2 co9 9 [6pli, sin 9 - Gp2is co9 Cl] 

Inequality (3.5) contains the components P,,, Pep = P,,, PBB of the tensor P in the 

system of principal axes a, p of the tensor P,.These components can be expressed in 
terms of the principal values of P,, P, of the tensor P and in terms of the angle h = 
= 0 - $ between the principal axes a and A of the tensors P,, and P by means of for- 

mulas (1.1) with the axis x replaced by the axis a, and the axis a by the axis A . Here 
‘r = h. After some simple operations we obtain 

e aa -PI) J, + PaBJB = (PI - PI) J, - (PI - P2) sin h. (J, sin h - JB cos h) (A.6) 

Pga J, + (Pss - ~2) Jg = (P2 - PZ) Jg + (PI - Pi) sin h (J, cos h + Ja sin A) 

Eliminating J,, Jg with the aid of (R. 4), we obtain the formulas 

](Pu, - PI) J, i- P+Ja 1 [PI + PZ - (PI - Pz) cos 24]= (PI - pr) m - (PI - P3) j s&’ 

[‘,~a Ja + (Pee - Pd Jai [PI + Pz - (PI - Pz) COB 2$,] = (Pz - ~2) n + (Pr - ~2) g ain J, 

Here 

j = [ 2ptij, + (pr - ~2) iB sin 261 sin h - ia [pr + p2 - (PI - PZ) cos 281 co9 h (A.@ 

g = [2p2j, + (~2 - PI) i, sin ae] sin h + i, [PI + p2 - (PI - pi) cos 281 co9 h 

Constructing the left side of inequality (3.5) by means of the above formulas and 

recalling steadystate condition (2.9). we arrive at inequality (3.6). 
Concerning the derivation of formula (6.9) etc. The limiting values of the vectors j 

and grad a2 on the two sides of the line of discontinuity of the controls are related by 

expressions obtainable from initial equations (1.1) and the continuity conditions 

]Zl’]‘=; [ztB]l= [w,,]+= [O&z 0 (A.9) 
Let fI+ be the angles between the normal n to the jump line and the axes a+ of 

the tensors (P,)+ on the opposite sides of this line. To obtain these relations we-must 

write out Eqs. (1.1) in the principal axes of the tensor P,. We have 

z’, = - plia + c+VB sin y, zb = - p2ia + Cwlv~ COB T 
(A.10) 

Here ja = - zpz, jp = zaa and 7 is the angle between the axis a and the axis x 

(Fig. 2). 
Next, inverting formulas (A. 1) and applying Eqs. (2.6), (2.7) for the values of (olt)* 

and Eqs. (A. 10) for the values of (zll)*, we can write Eqs. (A, 9) in the form 

[pliaGn el’_ - [pzi, cos ell= 0, ]P;loza co9 el_’ + [ p,‘osasin e]? = 0 (A.1 I) 

[i, coa 617 + [ip sin ejl = 0, [osr* sin el_’ - [ozB cos el_‘= 0 
The required relations can be obtained by solving these equations for (i,)_, tip)_, 

b&L, (($p)_. 

Concerning the derivation of formulas (7.1). The root (tg T)I of Eq. (7.1) is given by 

the formula 

(A.12) 
(Pit Pz) bJ."- %,n 

2 (P152~2s + P25102J + 

+ 
{(p1+ p2)Z (02{,52 - o2551)2 + 4 (Pl” + p?) 02r02115152 + 4PlPL ](6Js,51)2 + @&2)“l~‘z 

2 (P152wJ,+ P251(+& 
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or, which is the same thing, by the expression (see Fig. 7) 

- (Pi + Pz) coa (cp + II) + [GPIPZ + (PI - P2)2 cos’ (cp - 491 
‘i* 

Y V 

k 

2 (PI sin cp cos Q + p-2 co9 cp sin $) 
(A.23) 

y grad q It is easy to see that the expression 
e 

t & 4 (~1 sin ‘p cos 14 + PZ cos cp sin “4~))~ (I j 1 grad 02 ])-li, mBa 

Fig. 7 can be rewritten as 

01pi2 + a& + 2a,prp, + 2 (alp, + a& 14prP, + (pr - Pz) ’ cos 2 (q - 
(Xl& 

Simple operations give us the following expressions for the coefficients : 

a,=2sin2ipcos(cp-$), a,=2sin2$cos(cp-I#), ag = sin2T, as = sin2 Q 

as = 4 sin ‘p sin $ - (sin2q + sin2$) co9 (cp - $) 

The sign of jamsa. is the same as that of expression (A. 13) ; the latter is always posi- 
tive, since the difference 

14~,~, + (p1 _ ~2 coy2 ((P - *)I (pi sin2 cp + p? sinW .- {(~12sin2cp+P2~ sin2 $1 X 

x cos ((p - $1 + PIP2 14 sin cp sin 4 - (sin2 cp+ sinW Cos (cp - 4411” 

is clearly equal to 

4&p, [pi sin‘%p - p2 sin2 9 - (pi - pZ) sin cp sin $ cos (cp - $)I2 

The proof for the quantity ~~CIQ is entirely analogous. 
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